Vapor inhalation exposure to soman in conscious untreated rats: preliminary assessment of neurotoxicity.

نویسندگان

  • Michael W Perkins
  • Benjamin Wong
  • Ashley Rodriguez
  • Jennifer L Devorak
  • Thuy T Dao
  • Jessica A Leuschner
  • Robert K Kan
  • Alfred M Sciuto
چکیده

Neurological toxicity and brain injury following vapor inhalation exposure to the chemical warfare nerve agent (CWNA) soman (GD) were examined in untreated non-anesthetized rats. In this study, male Sprague-Dawley rats (300-350 g) were exposed to 600 mg × min/m(3) of soman or vehicle in a customized head-out inhalation system for 7 min. Convulsant animals were observed for clinical signs and various regions of the brain (dorsolateral thalamus, basolateral amygdala, piriform cortex, and lateral cortex) were collected for pathological observations 24 h post-exposure. Signs of CWNA-induced cholinergic crises including salivation, lacrimation, increased urination and defecation, and tremors were observed in all soman-exposed animals. Soman-exposed animals at 24 h post-exposure lost 11% of their body weight in comparison to 2% in vehicle-exposed animals. Whole blood acetylcholinesterase (AChE) activity was significantly inhibited in all soman-exposed groups in comparison to controls. Brain injury was confirmed by the neurological assessment of hematoxylin-eosin (H&E) staining and microscopy in the piriform cortex, dorsolateral thalamus, basolateral amygdala, and lateral cortex. Severe damage including prominent lesions, edematous, congested, and/or hemorrhagic tissues was observed in the piriform cortex, dorsolateral thalamus, and lateral cortex in soman-exposed animals 24 h post-exposure, while only minimal damage was observed in the basolateral amygdala. These results indicate that inhalation exposure to soman vapor causes neurological toxicity and brain injury in untreated unanesthetized rats. This study demonstrates the ability of the described soman vapor inhalation exposure model to cause neurological damage 24 h post-exposure in rats.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Iodomethane human health risk characterization.

Iodomethane is a new pre-plant soil fumigant approved in the United States. Human exposure may occur via inhalation due to the high vapor pressure of iodomethane. A quantitative human health risk assessment was conducted for inhalation exposure. The critical effects of acute duration iodomethane exposure are: (1) fetal losses in rabbits, (2) lesions in rat nasal epithelium, and (3) transient ne...

متن کامل

P-1: The Impact of Gasoline Vapor Inhalation on Serum Levels of Testosterone in Male Rats

s:1080:"Background: Studies have shown that gasoline vapor influences many physiological aspects of body. The present study was exerted to evaluate the effects of gasoline vapor inhalation on serum levels of testosterone in male rats. Materials and Methods: Male Wistar rats were randomly divided into control, gasoline vapor receiving for 1hour, 2 hours and 3 hours/day. After 10 weeks, blood sam...

متن کامل

Muscarinic receptor dysfunction induced by exposure to low levels of soman vapor.

In the eye, it has been previously reported that exposure to a cholinesterase inhibitor results in a reduced miotic response following prolonged exposure and a decreased miotic response to the cholinergic agonists. However, no studies exist that characterize the effect of a single low-level vapor exposure to a nerve agent on parasympathetic function in the eye or determine the threshold dose fo...

متن کامل

Development of a model for nerve agent inhalation in conscious rats.

This study characterizes the development of a head-out inhalation exposure system for assessing respiratory toxicity of vaporized chemical agents in untreated, non-anesthetized rats. The organophosphate diisopropyl fluorophosphate (DFP) induces classical cholinergic toxicity following inhalation exposure and was utilized to validate the effectiveness of this newly designed inhalation exposure s...

متن کامل

Prophylaxis against soman inhalation toxicity in guinea pigs by pretreatment alone with human serum butyrylcholinesterase.

Human butyrylcholinesterase (HuBChE) has previously been shown to protect mice, rats, and monkeys against multiple lethal toxic doses of organophosphorus (OP) anticholinesterases that were challenged by i.v. bolus injections. This study examines the concept of using a cholinesterase scavenger as a prophylactic measure against inhalation toxicity, which is the more realistic simulation of exposu...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:
  • Inhalation toxicology

دوره 28 1  شماره 

صفحات  -

تاریخ انتشار 2016